Background: Sagacious Confucius' Pillow Elixir (SCPE) is a common clinical prescription to treat cognitive impairment (CI) in East Asia.
Objective: To predict the active components of SCPE, identify the associated signaling pathway, and explore the molecular mechanism using systems pharmacology and an animal study.
Methods: Systems pharmacology and Python programming language-based molecular docking were used to select and analyze the active components and targets. Senescence-accelerated prone 8 mice were used as a CI model. The molecular mechanism was evaluated using the water maze test, neuropathological observation, cerebrospinal fluid microdialysis, and Western blotting.
Results: Thirty active components were revealed by screening relevant databases and performing topological analysis. Additionally, 376 differentially expressed genes for CI were identified. Pathway enrichment analysis, protein-protein interaction (PPI) network analysis and molecular docking indicated that SCPE played a crucial role in modulating the PI3K/Akt/mTOR signaling pathway, and 23 SCPE components interacted with it. In the CI model, SCPE improved cognitive function, increased the levels of the neurotransmitter 5-hydroxytryptamine (5-HT) and metabolite 5-hydroxyindole acetic acid (5-HIAA), ameliorated pathological damage and regulated the PI3K/AKT/mTOR signaling pathway. SCPE increased the LC3-II/LC3-I, p-PI3K p85/PI3K p85, p-AKT/AKT, and p-mTOR/mTOR protein expression ratios and inhibited P62 expression in the hippocampal tissue of the CI model.
Conclusion: Our study revealed that 23 active SCPE components improve CI by increasing the levels of the neurotransmitter 5-HT and metabolite 5-HIAA, suppressing pathological injury and regulating the PI3K/Akt/mTOR signaling pathway to improve cognitive function.
Keywords: active components; cognitive impairment; sagacious confucius’ pillow elixir; systems pharmacology; traditional Chinese medicine.