Efficient pH-universal aqueous supercapacitors enabled by an azure C-decorated N-doped graphene aerogel

J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1871-1880. doi: 10.1016/j.jcis.2023.07.142. Epub 2023 Jul 25.

Abstract

Current aqueous supercapacitors (SCs) possess the relative low energy density, and there is therefore widespread interest in cost-effective fabrication of capacitive materials with promoted specific capacitance and/or broadened voltage window. Here, a redox-active azure C-decorated N-doped graphene aerogel (AC - NGA) is fabricated using a simple hydrothermal self-assembly method through strong noncovalent π-π interaction. AC - NGA highlights an excellent charge storage performance (a high 591F g-1 gravimetric capacitance under a current density of 1.0 A g-1 and ultrahigh voltage window of 2.3 V) under pH-universal conditions. The capacitive contribution of charge storage is 91.7%, exceeding or comparable to those of the best pseudocapacitors known. Furthermore, a symmetric AC - NGA//AC - NGA device realizes high energy and power densities (15.2-60.2 Wh kg-1 at 650-23,000 W kg-1) and excellent cycling stability in acidic, neutral, and basic aqueous solutions. This work offers a cost-effective strategy to combine redox dye molecules with heteroatom-doped graphene aerogel for building green efficient pH-universal aqueous supercapacitors.

Keywords: Azure C; N-doped graphene; Symmetric supercapacitor; Widening voltage window; pH-universal.