Dehydropolymerization of Amine-Boranes using Bis(imino)pyridine Rhodium Pre-Catalysis: σ-Amine-Borane Complexes, Nanoparticles, and Low Residual-Metal BN-Polymers that can be Chemically Repurposed

Chemistry. 2023 Oct 26;29(60):e202302110. doi: 10.1002/chem.202302110. Epub 2023 Sep 21.

Abstract

The sigma amine-borane complexes [Rh(L1)(η22 -H3 B⋅NRH2 )][OTf] (L1=2,6-bis-[1-(2,6-diisopropylphenylimino)ethyl]pyridine, R=Me, Et, n Pr) are described, alongside [Rh(L1)(NMeH2 )][OTf]. Using R=Me as a pre-catalyst (1 mol %) the dehydropolymerization of H3 B ⋅ NMeH2 gives [H2 BNMeH]n selectively. Added NMeH2 , or the direct use of [Rh(L1)(NMeH2 )][OTf], is required for initiation of catalysis, which is suggested to operate through the formation of a neutral hydride complex, Rh(L1)H. The formation of small (1-5 nm) nanoparticles is observed at the end of catalysis, but studies are ambiguous as to whether the catalysis is solely nanoparticle promoted or if there is a molecular homogeneous component. [Rh(L1)(NMeH2 )][OTf] is shown to operate at 0.025 mol % loadings on a 2 g scale of H3 B ⋅ NMeH2 to give polyaminoborane [H2 BNMeH]n [Mn =30,900 g/mol, Ð=1.8] that can be purified to a low residual [Rh] (6 μg/g). Addition of Na[N(SiMe3 )2 ] to [H2 BNMeH]n results in selective depolymerization to form the eee-isomer of N,N,N-trimethylcyclotriborazane [H2 BNMeH]3 : the chemical repurposing of a main-group polymer.

Keywords: amine−borane; dehydropolymerization; mechanism; nanoparticle; rhodium.