Effects of lactate, super-GDF9, and low oxygen tension during bi-phasic in vitro maturation on the bioenergetic profiles of mouse cumulus-oocyte complex†

Biol Reprod. 2023 Oct 13;109(4):432-449. doi: 10.1093/biolre/ioad085.

Abstract

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

Keywords: bi-phasic IVM; cumulus–oocyte complex; glucose metabolism; in vitro maturation; lactate; mitochondria; oocyte-secreted factors; oxygen tension; real-time metabolic analysis; super-GDF9.