Combining Experimental with Computational Infrared and Mass Spectra for High-Throughput Nontargeted Chemical Structure Identification

Anal Chem. 2023 Aug 15;95(32):11901-11907. doi: 10.1021/acs.analchem.3c00937. Epub 2023 Aug 4.

Abstract

The inability to identify the structures of most metabolites detected in environmental or biological samples limits the utility of nontargeted metabolomics. The most widely used analytical approaches combine mass spectrometry and machine learning methods to rank candidate structures contained in large chemical databases. Given the large chemical space typically searched, the use of additional orthogonal data may improve the identification rates and reliability. Here, we present results of combining experimental and computational mass and IR spectral data for high-throughput nontargeted chemical structure identification. Experimental MS/MS and gas-phase IR data for 148 test compounds were obtained from NIST. Candidate structures for each of the test compounds were obtained from PubChem (mean = 4444 candidate structures per test compound). Our workflow used CSI:FingerID to initially score and rank the candidate structures. The top 1000 ranked candidates were subsequently used for IR spectra prediction, scoring, and ranking using density functional theory (DFT-IR). Final ranking of the candidates was based on a composite score calculated as the average of the CSI:FingerID and DFT-IR rankings. This approach resulted in the correct identification of 88 of the 148 test compounds (59%). 129 of the 148 test compounds (87%) were ranked within the top 20 candidates. These identification rates are the highest yet reported when candidate structures are used from PubChem. Combining experimental and computational MS/MS and IR spectral data is a potentially powerful option for prioritizing candidates for final structure verification.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Databases, Chemical*
  • Machine Learning
  • Metabolomics / methods
  • Reproducibility of Results
  • Tandem Mass Spectrometry*