Objective: To investigate the application of machine learning (ML) model-based thyroid ultrasound radiomics in the evaluation of malignancy in partially cystic thyroid nodules (PCTNs).
Methods: One hundred and ninety-two patients with 197 nodules PCTNs from January 2020 to December 2020 were retrospectively analyzed. Radiomics features were extracted based on hand-crafted features from the ultrasound images, and machine learning methods were used to build a classification model by radiomics features. The least absolute shrinkage and selection operator regression was applied to select the features of nonzero coefficients from radiomics features. The prediction performance of the established model was mainly evaluated by the area under the curve (AUC) and accuracy, sensitivity, and specificity.
Results: Nineteen radiomics features were extracted from the original images for each nodule. Eight ML classifiers were able to differentiate malignancy in PCTNs. The AUC, accuracy, sensitivity, and specificity of k-Nearest Neighbor (KNN) model were 0.909, 82.95%, 83.33%, and 89.90%, respectively, on the test cohort. The comparative result showed statistically equivalent performance for thyroid nodule diagnosis based on image fusion and single image. In addition, the ML-Based ultrasound radiomics system showed a better AUC as compared with ACR TI-RADS model and the ultrasound features model.
Conclusion: The novel ultrasonic-based ML model has an important clinical value for predicting malignancy in PCTNs. It can provide clinicians with a preoperative non-invasive primary screening method for PCTN diagnosis to avoid unnecessary medical investment and improve treatment outcomes.
Keywords: Machine learning; Partially Cystic Thyroid Nodules; Radiomics; Ultrasound.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.