Rational design of porous heterostructured electrode materials for high-performance supercapacitors remains a big challenge. Herein, we report the in situ synthesis of Co0.85Se@Ni3S2 hybrid nanosheet arrays supported on carbon cloth (CC) substrate though an efficient two-step electrodeposition method. Compared with pure Co0.85Se and Ni3S2, the well-defined Co0.85Se@Ni3S2 heterojunction possesses enriched active sites, improved electrical conductivity, and reduced ion diffusion resistance. Benefiting from its hierarchically porous nanostructure and the synergistic effect of Co0.85Se and Ni3S2, the as-synthesized Co0.85Se@Ni3S2 electrode delivers a gravimetric capacitance (Cg)/volumetric capacitance (Cv) of 1644.1F g-1/3161.7F cm-3 at 1 A g-1, outstanding rate capability of 60.7% capacitance retention at 20 A g-1, as well as good cycling performance of 87.8% capacitance retention after 5000 cycles. Additionally, a hybrid supercapacitor (HSC) device presents a maximum energy density (E) of 65.7 Wh kg-1 at 696.2 W kg-1 with 93.3% cyclic durability after 15,000 cycles. Thus, this work proposes a simple and effective strategy to fabricate porous heterojunctions as high-performance electrode materials for energy storage devices.
Keywords: Cobalt selenide; Electrodeposition; Nanosheet arrays; Nickel sulfide; Supercapacitors.
Copyright © 2023 Elsevier Inc. All rights reserved.