In the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2. d-galactose-treated mice (100 mg/kg/day, intravenously) for eight weeks, 3. d-galactose-treated mice (100 mg/kg/day, intravenously for eight weeks) and 6-AF-treated mice (30 mg/kg/day, intravenously for the final four weeks), and 4. 6-AF-treated mice (30 mg/kg/day i.p. for four weeks). We conducted many assays for antioxidant enzymes, including lipid peroxidation, catalase, glutathione (GSH), peroxidase (POD), and sulfoxide dismutase (SOD) (LPO). Western blotting was used to assess protein expression while the Morris water maze (MWM) and Y-maze (YM) were used to study behavior. The findings show that 6-AF greatly improved neuronal synapse and memory impairment brought on by d-galactose and it significantly inhibited BACE1 to reduce the amyloidogenic pathway of A (both amyloid β production and aggregation) by upregulating Nrf2 proteins (validated through molecular docking studies) and suppressing phosphorylated JNK and TNF-α proteins in adult albino mice's brain homogenates. These findings suggest that 6-AF, through the Nrf2/p-JNK/TNF-α signaling pathway, can diminish the oxidative stress caused by d-galactose, as well as the amyloidogenic route of A formation and memory impairment.
© 2023 The Authors. Published by American Chemical Society.