Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed-Cation Surface Modulation

Adv Mater. 2023 Dec;35(49):e2305946. doi: 10.1002/adma.202305946. Epub 2023 Oct 26.

Abstract

Perovskite/organic tandem solar cells (POTSCs) are gaining attention due to their easy fabrication, potential to surpass the S-Q limit, and superior flexibility. However, the low power conversion efficiencies (PCEs) of wide bandgap (Eg) perovskite solar cells (PVSCs) have hindered their development. This work presents a novel and effective mixed-cation passivation strategy (CE) to passivate various types of traps in wide-Eg perovskite. The complementary effect of 4-trifluoro phenethylammonium (CF3 -PEA+ , denoted as CA+ ) and ethylenediammonium (EDA2+ , denoted as EA2+ ) reduces both electron/hole defect densities and non-radiative recombination rate, resulting in a record open-circuit voltage (Voc ) of wide-Eg PVSCs (1.35 V) and a high fill factor (FF) of 83.29%. These improvements lead to a record PCE of 24.47% when applied to fabricated POTSCs, the highest PCE to date. Furthermore, unencapsulated POTSCs exhibit excellent photo and thermal stability, retaining over 90% of their initial PCE after maximum power point (MPP) tracking or exposure to 60 °C for 500 h. These findings imply that the synergic effect of surface passivators is a promising strategy to achieve high-efficiency and stable wide-Eg PVSCs and corresponding POTSCs.

Keywords: mixed cation; perovskite/organic tandem solar cells; surface modulation; synergic passivation; wide-bandgap perovskites.