Objective: Computed tomography angiography (CTA) is the most widely used imaging modality for intracranial aneurysm (IA) management, yet it remains inferior to digital subtraction angiography (DSA) for IA detection, particularly of small IAs in the cavernous carotid region. The authors evaluated a deep learning pipeline for segmentation of vessels and IAs from CTA using coregistered, segmented DSA images as ground truth.
Methods: Using 50 paired CTA-DSA images, the authors trained (n = 27), validated (n = 3), and tested (n = 20) a deep learning model (3D DeepMedic) for cerebrovasculature segmentation from CTA. A landmark-based coregistration algorithm was used for registration and upsampling of CTA images to paired DSA images. Segmented vessels from the DSA were used as the ground truth. Accuracy of the model for vessel segmentation was evaluated using conventional metrics (dice similarity coefficient [DSC]) and vessel segmentation-specific metrics, like connectivity-area-length (CAL). On the test cases (20 IAs), 3 expert raters attempted to detect and segment IAs. For each rater, the authors recorded the rate of IA detection, and for detected IAs, raters segmented and calculated important IA morphology parameters to quantify the differences in IA segmentation by raters to segmentations by DeepMedic. The agreement between raters, DeepMedic, and ground truth was assessed using Krippendorf's alpha.
Results: In testing, the DeepMedic model yielded a CAL of 0.971 ± 0.007 and a DSC of 0.868 ± 0.008. The model prediction delineated all IAs and resulted in average error rates of < 10% for all IA morphometrics. Conversely, average IA detection accuracy by the raters was 0.653 (undetected IAs were present to a significantly greater degree on the ICA, likely due to those in the cavernous region, and were significantly smaller). Error rates for IA morphometrics in rater-segmented cases were significantly higher than in DeepMedic-segmented cases, particularly for neck (p = 0.003) and surface area (p = 0.04). For IA morphology, agreement between the raters was acceptable for most metrics, except for the undulation index (α = 0.36) and the nonsphericity index (α = 0.69). Agreement between DeepMedic and ground truth was consistently higher compared with that between expert raters and ground truth.
Conclusions: This CTA segmentation network (DeepMedic trained on DSA-segmented vessels) provides a high-fidelity solution for CTA vessel segmentation, particularly for vessels and IAs in the carotid cavernous region.
Keywords: brain aneurysms; computed tomography angiography; deep learning; digital subtraction angiography; vasculature segmentation.