Background: The phase III trial that led to the approval of CPX-351 for treating secondary acute myeloid leukemia (sAML) in 2017 did not study the effect of specific mutations on outcomes.
Methods: This retrospective study was done to evaluate the effect of next-generation sequencing (NGS) results at the time of best response and before allogeneic stem cell transplant (alloSCT) in patients treated with CPX-351 as frontline therapy for sAML between 2017 and 2021.
Results: The most common mutations seen were DNMT3A (n = 17, 29.8%), SRSF2 (n = 13, 22.8%), RUNX1 (n = 13, 22.8%), TET2 (n = 9, 15.8%), ASXL1 (n = 9, 15.8%), and BCOR (n = 9, 15.8%). Median OS (mOS) for the entire cohort was 47 months. Though 64.7% patients cleared the DNMT3A mutation, only 44.4% and 22.2% of patients cleared the TET2 and ASXL1 mutations, respectively. The mOS for patients who cleared their mutations vs. for those who did not was not significantly longer (46 vs. 30 months; P = .991). The relapse-free survival (RFS) for patients who cleared mutations was numerically longer compared to those who had persistent mutations; however, this did not reach statistical significance (44 months vs. 26 months; P = .786).
Conclusion: This is the first study reporting NGS at best response and before alloSCT and its effect on OS and RFS. We found that OS and RFS were numerically longer among patients who cleared mutations; however, this did not reach statistical significance. In addition, alloSCT led to improved RFS irrespective of mutational clearance.
Keywords: AML; Mutations; NGS; Secondary acute myeloid leukemia; Vyxeos.
Copyright © 2023 Elsevier Inc. All rights reserved.