Aims: Increased collagen content of the myocardium modifies tissue reflectivity and integrated backscatter (IBS) indexes are suggested as markers of myocardial fibrosis (MF). We sought to assess the correlation between calibrated (c) IBS and bidimensional (2D) strain derived IBS with left ventricular (LV) MF in patients with severe aortic stenosis (AS).
Methods and results: We made a prospective observational cohort study including 157 patients with severe AS referred for surgical aortic valve replacement (AVR), with complete preoperative transthoracic echocardiography, cardiac magnetic resonance (CMR) and endomyocardial biopsy (EMB) obtained from the anterior basal septum at the time of surgery. Two groups of 30 patients were specifically evaluated, with and without late gadolinium enhancement (LGE) at CMR. IBS was obtained at QRS peak from both parasternal long axis (PLAX) and apical-three-chamber (AP3C) views and measured in decibels (dB). Whole-cardiac cycle IBS at basal anterior septum was obtained from 2D longitudinal strain. Correlation analysis of reflectivity indexes was performed with global and segmental (anterior basal septum) values of native T1 and extracellular volume (ECV), and EMB collagen volume fraction (CVF) (Masson´s Trichrome). IBS values were compared in both group of patients (LGE + vs. LGE -). 60 patients (74 [36-74] years, 45% male) with high gradient (mean gradient: 63 ± 20mmHg), normal flow (45 ± 10mL/m2) AS and preserved left ventricular ejection fraction (60 ± 9%) were included. Basal septum cIBS was - 17.45 (-31.2-10.95) and - 9.17 ± 9.45dB from PLAX and A3C views, respectively. No significant correlations were found between IBS and both non-invasive CMR tissue characterization and CVF: median MF of 9.7(2.1-79.9)%. Acoustic indexes were not significantly different according to the presence of pre-operative LGE.
Conclusion: In this group of patients with classical severe AS, IBS reflectivity indexes are of no added value to discriminate the presence of MF.
Keywords: Aortic stenosis; Cardiac magnetic resonance; Collagen volume fraction; Myocardial fibrosis; Ultrasound calibrated integrated backscatter.
© 2023. BioMed Central Ltd., part of Springer Nature.