Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.
Keywords: GmSNF1; salt and salt–alkali stress; soybean; transgenic plants.