To visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed c/a, while PM determines a best fitting continuous c/a by projective transformation of a master pattern. Both techniques require stored BKD patterns. The sensitivity of the c/a-determination was tested by investigating the microstructure of a ferritic steel with an expected c/a=1. The influence of the Kikuchi pattern noise on c/a was compared for a single or 40 averaged frames per measuring point, and turned out to be not significant. The application of RA and PM on the martensitic microstructure delivered qualitatively similar maps of c/a. The comparison of RA and PM shows that RA is suitably fast and precise during mapping the martensite c/a ratio in analyses of high carbon martensite, especially for fast initial surveys. As RA leads quantitatively to higher noise in c/a, the PM analysis can be used for higher precision results.
Keywords: EBSD; Martensite; Steel; Strain; Tetragonality.
Copyright © 2023 Elsevier B.V. All rights reserved.