With a global population of eight billion people, improving the sustainability and nutritional quality of diets has become critical. Mushrooms offer a promising solution because of their nutritional value and ability to be grown from agricultural residues, in line with the circular economy. This study, therefore, focuses on assessing the environmental compatibility of Agaricus bisporus mushroom production in Italy, the world's third largest per capita consumer, by using a Life Cycle Assessment (LCA) and an integrated Water-Energy-Nitrogen-Carbon-Food (WENCF) nexus analysis. The LCA results reveal that for a functional unit of 23,000 kg of the substrate, the production process emits 2.55 × 104 kg of CO2 eq. Sensitivity analysis shows that changing input quantities can reduce environmental impacts by about 5 %. In addition, one scenario evaluates the environmental effects of recycling resources by introducing water and ammonium sulfate from scratch instead of continuous recycling, along with water purification. The study shows that sustainable food production can mitigate resource depletion, climate-altering emissions, and intersectoral competition. Using agro residues for mushroom cultivation and optimizing resource management contribute to environmental sustainability. This approach could not only improve the resilience and efficiency of the food system but could also improve the sustainability of diets. In conclusion, this study highlights the importance of adopting sustainable and circular approaches in mushroom production to address global challenges related to food sustainability.
Keywords: Ammonium Sulphate; Circular economy; Life cycle assessment; Mushroom production; Water recycling.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.