We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers.