Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery

ACS Appl Bio Mater. 2023 Sep 18;6(9):3683-3695. doi: 10.1021/acsabm.3c00337. Epub 2023 Aug 16.

Abstract

Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.

Keywords: biomaterials; drug delivery; injectable; microgels; regenerative medicine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biocompatible Materials / chemistry
  • Hydrogels* / chemistry
  • Microgels*
  • Printing, Three-Dimensional
  • Tissue Engineering / methods

Substances

  • Hydrogels
  • Microgels
  • Biocompatible Materials