Circular RNAs (circRNAs) are important regulators of diverse biological processes of plants. However, the evolution and potential functions of circRNAs during winter dormancy and spring bud flushing of tea plant is largely unknown. Using RNA-seq data, a total of 1184 circRNAs were identified in the winter dormant and spring bud flushing leaf samples of tea plants in two different cultivars exhibiting different duration of winter dormancy. A total of 156 circRNAs are found to be differentially expressed and the weighted gene co-expression network (WGCNA) analysis revealed that 22 and 20 differentially expressed-circRNAs (DE-circRNAs) positively correlated with the flushing and dormant leaf traits, respectively, in both the tea cultivars used. Some transcription factors (TFs) viz. MYB, WRKY, ERF, bHLH and several genes related to secondary metabolite biosynthetic pathways are found to co-express with circRNAs. DE-circRNAs also predicted to interact with miRNAs and can regulate phytohormone biosynthesis and various signalling pathways in tea plant. This study uncovers the potential roles of circRNAs to determine winter dormancy and spring bud flushing conditions in tea plants.
Keywords: Circular RNA; Differentially expressed; Spring bud flushing; WGCNA; Winter dormancy.
Copyright © 2023 Elsevier B.V. All rights reserved.