Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers

ACS Appl Mater Interfaces. 2023 Aug 30;15(34):41101-41108. doi: 10.1021/acsami.3c07369. Epub 2023 Aug 16.

Abstract

Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO2/Si wafers. Electron irradiation of the amorphous PVBP molecular layers induces the formation of a continuous membrane with a thickness of 15 nm and a high density of subnanometer pores, providing a water permeance as high as 530 L m-2 h-1 bar-1, while repelling ions and molecules larger than 1 nm in size. A further introduction of a reinforced porous block copolymer layer enables the fabrication of centimeter-scale CNM composites that efficiently separate organic dyes from water. These results suggest a feasible route for large-scale nanomembrane fabrication.

Keywords: 2D materials; carbon nanomembranes; ion transport; membrane separation; water permeation.