In Vivo Cerebral Imaging of Mutant Huntingtin Aggregates Using 11C-CHDI-180R PET in a Nonhuman Primate Model of Huntington Disease

J Nucl Med. 2023 Oct;64(10):1581-1587. doi: 10.2967/jnumed.123.265569. Epub 2023 Aug 17.

Abstract

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin (HTT) gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand 11C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (11C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD. Methods: Rhesus macaques received MRI-guided intrastriatal delivery of a mixture of AAV2 and AAV2.retro viral vectors expressing an HTT fragment bearing 85 CAG repeats (85Q, n = 5), a control HTT fragment bearing 10 CAG repeats (10Q, n = 4), or vector diluent only (phosphate-buffered saline, n = 5). Thirty months after surgery, 90-min dynamic PET/CT imaging was used to investigate 11C-CHDI-180R brain kinetics, along with serial blood sampling to measure input function and stability of the radioligand. The total volume of distribution was calculated using a 2-tissue-compartment model as well as Logan graphical analysis for regional quantification. Immunostaining for mHTT was performed to corroborate the in vivo findings. Results: 11C-CHDI-180R displayed good metabolic stability (51.4% ± 4.0% parent in plasma at 60 min after injection). Regional time-activity curves displayed rapid uptake and reversible binding, which were described by a 2-tissue-compartment model. Logan graphical analysis was associated with the 2-tissue-compartment model (r 2 = 0.96, P < 0.0001) and used to generate parametric volume of distribution maps. Compared with controls, animals administered the 85Q fragment exhibited significantly increased 11C-CHDI-180R binding in several cortical and subcortical brain regions (group effect, P < 0.0001). No difference in 11C-CHDI-180R binding was observed between buffer and 10Q animals. The presence of mHTT aggregates in the 85Q animals was confirmed histologically. Conclusion: We validated 11C-CHDI-180R as a radioligand to visualize and quantify mHTT aggregated species in a HD macaque model. These findings corroborate our previous work in rodent HD models and show that 11C-CHDI-180R is a promising tool to assess the mHTT aggregate load and the efficacy of therapeutic strategies.

Keywords: Huntington disease; PET; brain; mHTT; nonhuman primate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Huntingtin Protein / genetics
  • Huntington Disease* / metabolism
  • Macaca mulatta / metabolism
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Positron Emission Tomography Computed Tomography
  • Positron-Emission Tomography

Substances

  • Huntingtin Protein
  • Nerve Tissue Proteins