Purpose: Bone metastasis (BM) adversely affects the prognosis of gastric cancer (GC). We investigated molecular features and immune microenvironment that characterize GC with BM compared to GC without BM.
Materials and methods: Targeted DNA and whole transcriptome sequencing were performed using formalin-fixed paraffin-embedded primary tumor tissues (gastrectomy specimens) of 50 GC cases with distant metastases (14 with BM and 36 without BM). In addition, immunohistochemistry (IHC) for mucin-12 and multiplex IHC for immune cell markers were performed.
Results: Most GC cases with BM had a histologic type of poorly cohesive carcinoma and showed worse overall survival (OS) than GC without BM (p < 0.05). GC with BM tended to have higher mutation rates in TP53, KDR, APC, KDM5A, and RHOA than GC without BM. Chief cell-enriched genes (PGA3, PGC, and LIPF), MUC12, MFSD4A, TSPAN7, and TRIM50 were upregulated in GC with BM compared to GC without BM, which was correlated with poor OS (p < 0.05). However, the expression of SERPINA6, SLC30A2, PMAIP1, and ITIH2 were downregulated in GC with BM. GC with BM was associated with PIK3/AKT/mTOR pathway activation, whereas GC without BM showed the opposite effect. The densities of helper, cytotoxic, and regulatory T cells did not differ between the two groups, whereas the densities of macrophages were lower in GC with BM (p < 0.05).
Conclusion: GC with BM had different gene mutation and expression profiles than GC without BM, and had more genetic alterations associated with a poor prognosis.
Keywords: Bone metastasis; Gene expression profile; Genetic alteration; High-throughput nucleotide sequencing; Stomach neoplasms.