The winning game outcome in basketball is partially contingent on the team's ability to secure and make more free-throw shooting attempts, especially close to the end of the game. Thus, the purpose of the present study was to perform a comprehensive biomechanical analysis of the free-throw shooting motion to examine differences between (a) proficient (≥70%) and non-proficient shooters (<70%) and (b) made and missed free-throw shoots within the proficient group of shooters. Thirty-four recreationally active males with previous basketball playing experience attempted ten consecutive free-throw shots (4.57 m), with a 10-15 s rest interval between each shot. An innovative three-dimensional markerless motion capture system (SwRI Enable, San Antonio, TX, USA) composed of nine high-definition cameras recording at 120 Hz was used to capture and analyze the biomechanical parameters of interest. Independent t-tests and Mann-Whitney U tests were used to examine a presence of statistically significant differences. The findings of the present study reveal that proficient free-throw shooters performed the shooting motion in a more controlled manner by having significantly lower knee and center of mass peak and mean angular velocities. Also, proficient shooters attained a significantly greater release height and had less forward trunk lean when compared to non-proficient shooters at the time point of the ball release. Moreover, despite being beneficial for improvements in shooting accuracy, our findings suggest that overemphasizing the release height may be in certain instances counterproductive, as it may lead to more missed than made free-throw shots within the proficient group of shooters.
Keywords: assessment; kinematic; kinetic; performance; shooting; sport.
© 2023 Cabarkapa, Cabarkapa, Miller, Templin, Frazer, Nicolella and Fry.