Deciphering the DNA methylation landscape of colorectal cancer in a Korean cohort

BMB Rep. 2023 Oct;56(10):569-574. doi: 10.5483/BMBRep.2023-0106.

Abstract

Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments. [BMB Reports 2023; 56(10): 569-574].

Publication types

  • News

MeSH terms

  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / pathology
  • CpG Islands / genetics
  • DNA Methylation* / genetics
  • Humans
  • Phenotype
  • Republic of Korea

Grants and funding

ACKNOWLEDGEMENTS This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (grant number: NRF-2017M3A9A7050614). It was additionally supported by a grant from the National Research Foundation of Korea (NRF-2020M3A9I6A01036057).