Evaluation of diffusion-weighted magnetic resonance imaging of the rectal cancers: comparison between modified reduced field-of-view single-shot echo-planar imaging with tilted two-dimensional radiofrequency excitation pulses and conventional full field-of-view readout-segmented echo-planar imaging

Radiol Med. 2023 Oct;128(10):1192-1198. doi: 10.1007/s11547-023-01699-2. Epub 2023 Aug 22.

Abstract

Purpose: To evaluate the image quality qualitatively and quantitatively, as well as apparent diffusion coefficient (ADC) values of modified reduced field-of-view diffusion-weighted magnetic resonance imaging (MRI) using spatially tailored two-dimensional radiofrequency pulses with tilted excitation plane (tilted r-DWI) based on single-shot echo planar imaging (SS-EPI) compared with full-size field-of-view DWI (f-DWI) using readout segmented (RS)-EPI in patients with rectal cancer.

Materials and methods: Twenty-two patients who underwent an MRI for further evaluation of rectal cancer were included in this retrospective study. All MR images were analyzed to compare image quality, lesion conspicuity, and artifacts between f-DWI with RS-EPI and tilted r-DWI with SS-EPI. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC values were also compared. The Wilcoxon signed-rank test or paired t test was performed to compare the qualitative and quantitative assessments.

Results: All image quality scores, except aliasing artifacts, were significantly higher (p < 0.01 for all) in tilted r-DWI than f-DWI with RS-EPI. CNR in tilted r-DWI was significantly higher than in f-DWI with RS-EPI (p < 0.01), while SNR was not significantly different. Regarding the ADC values, no significant difference was observed between tilted r-DWI and f-DWI with RS-EPI (p = 0.27).

Conclusion: Tilted r-DWI provides a better image quality with fewer artifacts and higher rectal lesion conspicuity than f-DWI with RS-EPI, indicating the feasibility of this MR sequence in evaluating rectal cancer in clinical practice.

Keywords: Diffusion-weighted imaging; Rectal cancer; Reduced field-of-view; Tilted excitation.

MeSH terms

  • Diffusion Magnetic Resonance Imaging / methods
  • Echo-Planar Imaging* / methods
  • Humans
  • Rectal Neoplasms* / diagnostic imaging
  • Reproducibility of Results
  • Retrospective Studies
  • Signal-To-Noise Ratio