Preliminary feasibility study using a solution of synthetic enzymes to replace the natural enzymes in polyhemoglobin-catalase-superoxide dismutase-carbonic anhydrase: effect on warm ischemic hepatocyte cell culture

Front Bioeng Biotechnol. 2023 Aug 7:11:1231384. doi: 10.3389/fbioe.2023.1231384. eCollection 2023.

Abstract

This is a study on a simple solution of chemically prepared small chemical molecules of synthetic enzymes: catalase, superoxide dismutase, and carbonic anhydrase (CAT, SOD, and CA). We carried out a study to see if these synthetic enzymes can replace the natural enzymes (CAT, SOD, and CA) and avoid the need for the complicated cross-linking of natural enzymes to PolyHb to form PolyHb-CAT-SOD-CA. We compared the effect a solution of these three synthetic enzymes has on the viability of warm-ischemic hepatocytes that were exposed to nitrogen for 1 h at 37°C. PolyHb significantly increased the viability. The three synthetic enzymes themselves also significantly increased the viability. The use of both PolyHb and the three synthetic enzymes resulted in an additive effect in the recovery of viability. Increasing the concentration of the synthetic enzymes resulted in further increase in the effect due to the synthetic enzymes. Implications: In addition to PolyHb, there are a number of other HBOC oxygen carriers. However, only Biopure's HBOC product has received regulatory approval, but only in Russia and South Africa. None of the HBOCs has received regulatory approval by other countries. If regulatory agencies require HBOCs to have antioxidant or CO2 transport properties, all that is needed is to add or inject the solution of synthetic enzymes as a separate component.

Keywords: CO2 carrier; antioxidant; artificial cell; oxygen carrier; polyhemoglobin; regenerative medicine; synthetic enzyme; warm ischemia.