Objective: B cells are important in the pathogenesis of primary Sjögren's syndrome (pSS). Patients positive for Sjögren's syndrome antigen A/Sjögren syndrome antigen B (SSA/SSB) autoantibodies are more prone to systemic disease manifestations and adverse outcomes. We aimed to determine the role of B cell composition, gene expression, and B cell receptor usage in pSS subgroups stratified for SSA/SSB antibodies.
Methods: Over 230,000 B cells were isolated from peripheral blood of patients with pSS (n = 6 SSA-, n = 8 SSA+ single positive and n = 10 SSA/SSB+ double positive) and four healthy controls and processed for single-cell RNA sequencing (scRNA-seq) and single-cell variable, diversity, and joining (VDJ) gene sequencing (scVDJ-seq).
Results: We show that SSA/SSB+ patients present the highest and lowest proportion of naïve and memory B cells, respectively, and the highest up-regulation of interferon-induced genes across all B cell subtypes. Differential usage of IGHV showed that IGHV1-69 and IGHV4-30-4 were more often used in all pSS subgroups compared with controls. Memory B cells from SSA/SSB+ patients displayed a higher proportion of cells with unmutated VDJ transcripts compared with other pSS patient groups and controls, indicating altered somatic hypermutation processes. Comparison with previous studies revealed heterogeneous clonotype pools, with little overlap in CDR3 sequences. Joint analysis using scRNA-seq and scVDJ-seq data allowed unsupervised stratification of patients with pSS and identified novel parameters that correlated to disease manifestations and antibody status.
Conclusion: We describe heterogeneity and molecular characteristics in B cells from patients with pSS, providing clues to intrinsic differences in B cells that affect the phenotype and outcome and allowing stratification of patients with pSS at improved resolution.
© 2023 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.