Rv1453 is associated with clofazimine resistance in Mycobacterium tuberculosis

Microbiol Spectr. 2023 Aug 24;11(5):e0000223. doi: 10.1128/spectrum.00002-23. Online ahead of print.

Abstract

Clofazimine (CFZ) has been repurposed for treating tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB). However, the mechanisms of resistance to clofazimine are poorly understood. We previously reported a mutation located in the intergenic region of Rv1453 that was linked to resistance to CFZ and demonstrated that an Rv1453 knockout resulted in an increased minimum inhibitory concentration (MIC) of CFZ. The current study aims to go back and describe in detail how the mutation was identified and further explore its association with CFZ resistance by testing additional 30 isolates. We investigated MICs of clofazimine against 100 clinical strains isolated from MDR-TB patients by microplate alamarBlue assay. Whole-genome sequencing (WGS) was performed on 11 clofazimine-resistant and 7 clofazimine-susceptible strains, including H37Rv. Among the 11 clofazimine-resistant mutants subjected to WGS, the rate of mutation in the intergenic region of the Rv1453 gene was 55% (6/11) in clofazimine-resistant strains. Among another 30 clofazimine-resistant clinical isolates, 27 had mutations in the intergenic region of the Rv1453 gene. A mutation in the Rv1453 gene associated with clofazimine resistance was identified, which shed light on the mechanisms of action and resistance of clofazimine. IMPORTANCE Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis, especially the emergence of multidrug-resistant tuberculosis (MDR-TB) brings great distress to humans. Clofazimine (CFZ) plays an important role in the treatment of MDR-TB. To understand the underlying mechanism of clofazimine resistance better, in this study, we review and detail the findings of the mutation of intergenic region of Rv1453 and find additional evidence that this mutation is related to clofazimine resistance in 30 additional isolates. The significance of our research is to contribute to a comprehensive understanding of clofazimine-resistant mechanisms, which is critical for reducing the emergence of resistance and for anti-TB drug discovery.

Keywords: Mycobacterium tuberculosis; Rv1453; clofazimine; drug resistant.