An Extracellular Vesicle-Cloaked Multifaceted Biocatalyst for Ultrasound-Augmented Tendon Matrix Reconstruction and Immune Microenvironment Regulation

ACS Nano. 2023 Sep 12;17(17):16501-16516. doi: 10.1021/acsnano.3c00911. Epub 2023 Aug 24.

Abstract

The healing of tendon injury is often hindered by peritendinous adhesion and poor regeneration caused by the accumulation of reactive oxygen species (ROS), development of inflammatory responses, and the deposition of type-III collagen. Herein, an extracellular vesicles (EVs)-cloaked enzymatic nanohybrid (ENEV) was constructed to serve as a multifaceted biocatalyst for ultrasound (US)-augmented tendon matrix reconstruction and immune microenvironment regulation. The ENEV-based biocatalyst exhibits integrated merits for treating tendon injury, including the efficient catalase-mimetic scavenging of ROS in the injured tissue, sustainable release of Zn2+ ions, cellular uptake augmented by US, and immunoregulation induced by EVs. Our study suggests that ENEVs can promote tenocyte proliferation and type-I collagen synthesis at an early stage by protecting tenocytes from ROS attack. The ENEVs also prompted efficient immune regulation, as the polarization of macrophages (Mφ) was reversed from M1φ to M2φ. In a rat Achilles tendon defect model, the ENEVs combined with US treatment significantly promoted functional recovery and matrix reconstruction, restored tendon morphology, suppressed intratendinous scarring, and inhibited peritendinous adhesion. Overall, this study offers an efficient nanomedicine for US-augmented tendon regeneration with improved healing outcomes and provides an alternative strategy to design multifaceted artificial biocatalysts for synergetic tissue regenerative therapies.

Keywords: anti-inflammatory and tissue regeneration; biocatalytic therapies; extracellular vesicles; nanomedicines; ultrasound.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Collagen Type I
  • Extracellular Vesicles*
  • Rats
  • Reactive Oxygen Species
  • Tendon Injuries*
  • Tendons

Substances

  • Reactive Oxygen Species
  • Collagen Type I