Development of a decentralized cohort for studying post-acute sequelae of COVID-19 in India in the Data4life Study

Commun Med (Lond). 2023 Aug 25;3(1):117. doi: 10.1038/s43856-023-00349-y.

Abstract

Background: Decentralized, digital health studies can provide real-world evidence of the lasting effects of COVID-19 on physical, socioeconomic, psychological, and social determinant factors of health in India. Existing research cohorts, however, are small and were not designed for longitudinal collection of comprehensive data from India's diverse population. Data4Life is a nationwide, digitally enabled, health research initiative to examine the post-acute sequelae of COVID-19 across individuals, communities, and regions. Data4Life seeks to build an ethnically and geographically diverse population of at least 100,000 participants in India.

Methods: Here we discuss the feasibility of developing a completely decentralized COVID-19 cohort in India through qualitative analysis of data collection procedures, participant characteristics, participant perspectives on recruitment and reported study motivation.

Results: As of June 13th, 2022, more than 6,000 participants from 17 Indian states completed baseline surveys. Friend and family referral were identified as the most common recruitment method (64.8%) across all demographic groups. Helping family and friends was the primary reason reported for joining the study (61.5%).

Conclusions: Preliminary findings support the use of digital technology for rapid enrollment and data collection to develop large health research cohorts in India. This demonstrates the potential for expansion of digitally enabled health research in India. These findings also outline the value of person-to-person recruitment strategies when conducting digital health research in modern-day India. Qualitative analysis reveals opportunities to increase diversity and retention in real time. It also informs strategies for improving participant experiences in the current Data4Life initiative and future studies.

Plain language summary

Due to the vast geographical size and ethnic diversity of the population, India represents a huge challenge for conducting research studies. The Data4Life study was set up to understand if digital tools can be an effective way to study long-term effects of COVID-19 across India. We studied different ways of collecting the relevant information from participants, the background of each participant, reasons, and motivation of each participant for joining the study. The results showed that friend and family referrals were the most common recruitment reason. Helping family and friends was reported as the main motivation for joining the study. Overall, the findings support the use of digital tools as an effective recruitment method for research studies in India.