In recent years, group equivariant non-expansive operators (GENEOs) have started to find applications in the fields of Topological Data Analysis and Machine Learning. In this paper we show how these operators can be of use also for the removal of impulsive noise and to increase the stability of TDA in the presence of noisy data. In particular, we prove that GENEOs can control the expected value of the perturbation of persistence diagrams caused by uniformly distributed impulsive noise, when data are represented by L-Lipschitz functions from R to R.
Keywords: GENEO; impulsive noise; machine learning; persistence diagram; persistent homology.