The scattering of fragments is a notable characteristic of the explosive detonation of a shelled charge. This study examines the fracture and fragmentation of the shell and the process by which natural fragments form under the strains of implosion. The analysis takes into account both the explosive's energy output and the casing's dynamic response. For this purpose, utilizing a thermochemical code as an alternative to the conventionally employed cylinder test, the Jones-Wilkins-Lee equation of state (JWL EOS) was calibrated within a range of relative specific volume up to 13. The detonation of the shelled charge was subsequently analyzed using the continuum-discontinuum element method (CDEM). Following this, the formation mechanisms and scattering characteristics of natural fragments were scrutinized. The analysis found that the shell predominantly experiences shear failure with uniform evolution, displaying a "hysteresis effect" and two mutation stages in the evolution of tensile failure. Within the JWL EOS's calibrated range, the representation of fragment displacement and velocity improved by 47.97% and 5.30%, respectively. This study provides valuable guidance for designing the power field of warheads and assessing their destructive power.
Keywords: equation of state; evolution of cracks; fragments scattering; shelled charge.