Fabrication high toughness poly(butylene adipate-co-terephthalate)/thermoplastic starch composites via melt compounding with ethylene-methyl acrylate-glycidyl methacrylate

Int J Biol Macromol. 2023 Oct 1:250:126446. doi: 10.1016/j.ijbiomac.2023.126446. Epub 2023 Aug 24.

Abstract

The preparation of biodegradable composites with high toughness and low cost is of great significance for their application and promotion in the packaging field. As a renewable and biodegradable material with abundant sources, the inclusion of starch in biodegradable composites can significantly reduce costs. However, the poor compatibility between starch and matrix severely limits its large-scale practical application. In this work, the poly(butylene adipate-co-terephthalate)/thermoplastic starch/ethylene-methyl acrylate-glycidyl methacrylate (PBAT/TPS/EGMA) blends with high toughness were prepared by melt compounding. The elongation at break increased significantly from 533 ± 125 % for the PBAT/TPS(60/40) blend to 1188 ± 28 % for the PBAT/TPS/EGMA(60/40/2) blend. According to the analysis of Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM), the toughness improvement brought about by the addition of EGMA can be attributed to the enhanced compatibility between PBAT and TPS and the refinement of TPS particle size. The knowledge obtained from this study provides a method to enhance the toughness of biodegradable polymer composites with high TPS loading, which will facilitate the practical application of starch in the packing field.

Keywords: Biodegradable; In-situ compatibilization reaction; Toughness.