Water temperature plays a crucial role in the physiology of aquatic species, particularly in their survival and development. Thus, resource programs are commonly used to manage water quality conditions for endemic species. In a river system like the Nechako River system, central British Columbia, a water management program was established in the 1980s to alter water release in the summer months to prevent water temperatures from exceeding a 20 °C threshold downstream during the spawning season of Sockeye salmon (Oncorhynchus nerka). Such a management regime could have consequences for other resident species like the white sturgeon (Acipenser transmontanus). Here, we use a hydrothermal model and white sturgeon life stage-specific experimental thermal tolerance data to evaluate water releases and potential hydrothermal impacts based on the Nechako water management plan (1980-2019). Our analysis focused mainly on the warmest five-month period of the year (May to September), which includes the water release management period (July-August). Our results show that the thermal exposure risk, an index that measures temperature impact on species physiology of Nechako white sturgeon across all early life stages (embryo, yolk-sac larvae, larvae, and juvenile) has increased substantially, especially in the 2010s relative to the management program implementations' first decade (the 1980s). The embryonic life stage was the most impacted, with a continuous increase in potential adverse thermal exposure in all months examined in the study. We also recorded major impacts of increased thermal exposure on the critical habitats necessary for Nechako white sturgeon recovery. Our study highlights the importance of a holistic management program with consideration for all species of the Nechako River system and the merit of possibly reviewing the current management plan, particularly with the current concerns about climate change impacts on the Nechako River.
Keywords: Nechako river; Physiological limits; Temperature; Thermal exposure; White sturgeon.
Copyright © 2023 Elsevier Ltd. All rights reserved.