A molecular dynamics study of cell-penetrating peptide transportan-10 (TP10): Binding, folding and insertion to transmembrane state in zwitterionic membrane

Biochim Biophys Acta Biomembr. 2024 Jan;1866(1):184218. doi: 10.1016/j.bbamem.2023.184218. Epub 2023 Aug 25.

Abstract

Transportan 10 (TP10) is a 21-residue, cationic, α-helical cell-penetrating peptide that can be used as a delivery vector for various bioactive molecules. Based on recent confocal microscopy studies, it is believed that TP10 can translocate across neutral lipid membrane passively, possibly as a monomer, without the formation of permanent pore. Here, we performed extensive molecular dynamics (MD) simulations of TP10W (Y3W variant of TP10) to find the microscopic details of binding, folding and insertion of TP10W to transmembrane state in POPC bilayer. Binding study with CHARMM36 force field showed that TP10W initially binds to the membrane surface in unstructured configuration, but it spontaneously folds into α-helical conformation under the lipid head groups. Further insertion of TP10W, changing from a surface bound state to a vertically oriented transmembrane state, was investigated via umbrella simulations. The resulting free energy profile shows a relatively small barrier between two states, suggesting a possible translocation pathway as a monomer. In fact, unbiased simulation of transmembrane TP10W revealed how a charged Lys side chain can move from one leaflet to the other without a significant free energy cost. Finally, we compared the results of TP10W simulations with those of point mutated variants (TP10W-K12A18 and TP10W-K19L) to understand the effect of charge distribution on the peptide. It was observed that such a conservative mutation can cause noticeable changes in the conformations of both surface bound and transmembrane states. The results of present study will be discussed in relation to the experimentally observed activities of TP10W against neutral membrane.

Keywords: Cell penetrating peptide; Free energy change; Membrane translocation; Molecular dynamics simulation; Transportan 10; α-Helical amphipathic peptide.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell-Penetrating Peptides* / chemistry
  • Lipids
  • Molecular Dynamics Simulation
  • Recombinant Fusion Proteins

Substances

  • transportan-10
  • Cell-Penetrating Peptides
  • Recombinant Fusion Proteins
  • Lipids