The principal transcriptome analysis is the determination of differentially expressed genes across experimental conditions. For this, the next-generation sequencing of RNA (RNA-seq) has several advantages over other techniques, such as the capability of detecting all the transcripts in one assay over RT-qPCR, such as its higher accuracy and broader dynamic range over microarrays or the ability to detect novel transcripts, including non-coding RNA molecules, at nucleotide-level resolution over both techniques. Despite these advantages, many microbiology laboratories have not yet applied RNA-seq analyses to their investigations. The high cost of the equipment for next-generation sequencing is no longer an issue since this intermediate part of the analysis can be provided by commercial or central services. Here, we detail a protocol for the first part of the analysis, the RNA extraction and an introductory protocol to the bioinformatics analysis of the sequencing data to generate the differential expression results.
Keywords: Bioconductor; Differential expression; RNA extraction; RNA-seq; Transcriptomics.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.