Purpose: To compare the diagnostic performance of 1.5 T versus 3 T magnetic resonance angiography (MRA) for detecting cerebral aneurysms with clinically available deep learning-based computer-assisted detection software (EIRL aneurysm® [EIRL_an]), which has been approved by the Japanese Pharmaceuticals and Medical Devices Agency. We also sought to analyze the causes of potential false positives.
Methods: In this single-center, retrospective study, we evaluated the MRA scans of 90 patients who underwent head MRA (1.5 T and 3 T in 45 patients each) in clinical practice. Overall, 51 patients had 70 aneurysms. We used MRI from a vendor not included in the dataset used to create the EIRL_an algorithm. Two radiologists determined the ground truth, the accuracy of the candidates noted by EIRL_an, and the causes of false positives. The sensitivity, number of false positives per case (FPs/case), and the causes of false positives were compared between 1.5 T and 3 T MRA. Pearson's χ2 test, Fisher's exact test, and the Mann‒Whitney U test were used for the statistical analyses as appropriate.
Results: The sensitivity was high for 1.5 T and 3 T MRA (0.875‒1), but the number of FPs/case was significantly higher with 3 T MRA (1.511 vs. 2.578, p < 0.001). The most common causes of false positives (descending order) were the origin/bifurcation of vessels/branches, flow-related artifacts, and atherosclerosis and were similar between 1.5 T and 3 T MRA.
Conclusion: EIRL_an detected significantly more false-positive lesions with 3 T than with 1.5 T MRA in this external validation study. Our data may help physicians with limited experience with MRA to correctly diagnose aneurysms using EIRL_an.
Keywords: Computer-assisted detection; Deep learning; Intracranial aneurysm; Magnetic resonance angiography.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.