Switchable and Functional Fluorophores for Multidimensional Single-Molecule Localization Microscopy

Chem Biomed Imaging. 2023 Jun 28;1(5):403-413. doi: 10.1021/cbmi.3c00045. eCollection 2023 Aug 28.

Abstract

Multidimensional single-molecule localization microscopy (mSMLM) represents a paradigm shift in the realm of super-resolution microscopy techniques. It affords the simultaneous detection of single-molecule spatial locations at the nanoscale and functional information by interrogating the emission properties of switchable fluorophores. The latter is finely tuned to report its local environment through carefully manipulated laser illumination and single-molecule detection strategies. This Perspective highlights recent strides in mSMLM with a focus on fluorophore designs and their integration into mSMLM imaging systems. Particular interests are the accomplishments in simultaneous multiplexed super-resolution imaging, nanoscale polarity and hydrophobicity mapping, and single-molecule orientational imaging. Challenges and prospects in mSMLM are also discussed, which include the development of more vibrant and functional fluorescent probes, the optimization of optical implementation to judiciously utilize the photon budget, and the advancement of imaging analysis and machine learning techniques.

Publication types

  • Review