Efficient Photocatalytic Reduction of Hexavalent Chromium by BiVO4-Decorated MXene Photocatalysts and Their Charge Carrier Dynamics

Langmuir. 2023 Sep 12;39(36):12725-12739. doi: 10.1021/acs.langmuir.3c01462. Epub 2023 Sep 1.

Abstract

The synergistically MXene (Ti3C2Tx) co-catalyst-decorated BiVO4-based heterostructured photocatalysts have been synthesized by a hydrothermal approach with varied loading concentrations of MXene (Ti3C2Tx) to drive the hexavalent chromium reduction efficiently. The formation of the heterostructured photocatalyst was confirmed by the appearance of X-ray diffraction (XRD) peaks corresponding to the monoclinic BiVO4 phase and MXene (Ti3C2Tx) and also the antisymmetric (834 cm-1) and symmetric stretching (715 cm-1) of tetrahedral VO4 and D (1330 cm-1) and G (1570 cm-1) bands corresponding to MXene (Ti3C2Tx) in the Raman spectrum. The worm-like structures of BiVO4 nanocrystals grew onto the lamellar sheets of MXene (Ti3C2Tx), as shown by field emission scanning electron microscopy (FESEM), and has an increased surface area of 15.62 m2g-1 in the case of BVO-20-TC. X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of V5+ and Ti3+states, and the uniform distribution of BiVO4 nanocrystals over lamellar sheets of MXene (Ti3C2Tx) is evident from energy-dispersive X-ray (EDX) analysis. The ultraviolet-diffuse reflectance spectroscopy (UV-DRS) spectra suggest a decrease in the band gap energy of BVO-20-TC to 2.335 eV, promoting a higher degree of visible light harvesting. Upon optimization, by varying the pH, the amount of the photocatalyst, and the concentration of Cr(IV), BVO-20-TC exhibits the highest photocatalytic efficiency (96.39%) while using a Cr(VI) concentration of 10 ppm at pH 2 and 15 mg of the photocatalyst, and the photoreduction of Cr(VI) to Cr(III) follows the pseudo-first-order reaction. The decrease in the PL intensity in BVO-20-TC reveals a faster transfer of electrons from MXene (Ti3C2Tx) to BiVO4. Further, the higher degree of band bending at the BiVO4/MXene (Ti3C2Tx) heterojunction, revealed from the Mott-Schottky analysis, facilitates efficient charge transfer and eventually faster and efficient photoreduction of Cr(VI) to Cr(III). The reusability and stability test undertaken for BVO-20-TC reveals that even after five cycles, the Cr (VI) photoreduction efficacy is retained. This work provides insights into photoreduction of Cr (VI) by using such heterostructures.