Compact continuous-wave solid-state Raman lasers at 707 and 714 nm for laser trapping and cooling of atomic strontium and radium

Opt Lett. 2023 Sep 1;48(17):4645-4648. doi: 10.1364/OL.498851.

Abstract

Two compact laser sources at 707 and 714 nm are realized efficiently by using a diode-pumped a-cut Nd:YVO4 laser with intracavity stimulated Raman scattering and sum-frequency generation (SFG). The fundamental wave at 1342 nm is generated by the 4F3/24I13/2 transition in Nd:YVO4 crystal. The Raman Stokes waves at 1496 and 1526 nm were obtained by placing the c-axis of the Nd:YVO4 crystal along the Ng and Nm axes of an Np-cut KGW crystal, respectively. LBO crystals with critical phase matching are used to perform the intracavity SFG of fundamental and Stokes waves. At a pump power of 36 W, the maximum output powers at 707 and 714 nm can reach 2.72 and 3.14 W, corresponding to light-to-light conversion efficiencies of 7.5% and 8.7%, respectively. The developed 707 and 714 nm laser sources are practically useful in laser trapping and cooling related to atomic strontium and radium.