N-doped carbon sheets supported P-Fe3O4-MoO2 for freshwater and seawater electrolysis

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1217-1227. doi: 10.1016/j.jcis.2023.08.141. Epub 2023 Aug 23.

Abstract

Electric-driven freshwater/seawater splitting is an attractive and sustainable route to realize the generation of H2 and O2. Molybdenum-based oxides exhibit poor activity toward freshwater/seawater electrolysis. Herein, we adjusted the electronic structure of MoO2 by constructing N-doped carbon sheets supported P-Fe3O4-MoO2 nanosheets (P-Fe3O4-MoO2/NC). P-Fe3O4-MoO2/N-doped carbon sheets were precisely prepared by pyrolysis of Schiff base Fe complex and MoO3 nanosheets through phosphorization. Benefiting from the unique structures of the samples, it required 119/145 mV to drive freshwater/seawater reduction reaction at 10 mA/cm2. P-Fe3O4-MoO2/NC catalysts exhibited superior freshwater/seawater oxidation reactivity with 180/189 mV at 10 mA/cm2 compared with commercial RuO2. The low cell voltages for P-Fe3O4-MoO2/NC were 1.47 and 1.59 V towards freshwater and seawater electrolysis, respectively. Our work might shed light on the structural modulation of Mo-based oxides for enhancing freshwater and seawater electrolysis activity.

Keywords: Freshwater electrolysis; Interface structure; N-doped carbon; P-Fe(3)O(4)-MoO(2); Seawater electrolysis.