An enduring question in cognitive science is how perceptually novel objects are processed. Addressing this issue has been limited by the absence of a standardised set of object-like stimuli that appear realistic, but cannot possibly have been previously encountered. To this end, we created a dataset, at the core of which are images of 400 perceptually novel objects. These stimuli were created using Generative Adversarial Networks that integrated features of everyday stimuli to produce a set of synthetic objects that appear entirely plausible, yet do not in fact exist. We curated an accompanying dataset of 400 familiar stimuli, which were matched in terms of size, contrast, luminance, and colourfulness. For each object, we quantified their key visual properties (edge density, entropy, symmetry, complexity, and spectral signatures). We also confirmed that adult observers (N = 390) perceive the novel objects to be less familiar, yet similarly engaging, relative to the familiar objects. This dataset serves as an open resource to facilitate future studies on visual perception.
© 2023. Springer Nature Limited.