Acinetobacter baumannii is Gram-negative pathogen with extensive role in healthcare-associated infections (HAIs). Plasmids in this species are important carriers of antimicrobial resistance genes. In this work, we investigated the plasmids of 227 Brazilian A. baumannii genomes. A total of 389 plasmid sequences with 424 Rep proteins typed to 22 different homology groups (GRs) were identified. The GR2 plasmid group was the most predominant (40.6%), followed by the GR4 group (16.7%), representing ∼57% of all plasmids. There is a wide distribution of plasmids among the isolates and most strains carry more than one plasmid. Our analyses revealed a significant prevalence of GR4 plasmids in Brazilian A. baumannii genomes carrying several antimicrobial resistance genes, notably to carbapenem (39.43%). These plasmids harbor a MOBQ relaxase that might confer increased spreading potential in the environment. Most plasmids of the predominant groups belong to the same plasmid taxonomic unit (PTU-Pse7) and have a AbkA/AbkB toxin-antitoxin system that has a role in plasmid stability and dissemination of carbapenem resistance genes. The results of this work should contribute to our understanding of the molecular content of plasmids in a large and populous country, highlighting the importance of genomics for enhanced epidemiological surveillance.
Keywords: Acinetobacter; Rep protein; antimicrobial resistance; carbapenem resistance; plasmid replicase; plasmid typing.
© The Author(s) 2023. Published by Oxford University Press on behalf of FEMS.