Efficiency of charge transfer in changing the dissociation dynamics of OD+ transients formed after the photo-fragmentation of D2O

J Chem Phys. 2023 Sep 7;159(9):094301. doi: 10.1063/5.0159300.

Abstract

We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path-OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ- → B 3Σ--involving a combination of spin-orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.