Hydrogen Evolution Reaction on Single-Atom Pt Doped in Ni Matrix under Strong Alkaline Condition

J Phys Chem Lett. 2023 Sep 14;14(36):8121-8128. doi: 10.1021/acs.jpclett.3c02142. Epub 2023 Sep 5.

Abstract

Pt catalyst has been considered as the state-of-the-art catalyst for hydrogen evolution reaction (HER) under acid condition. However, its catalytic kinetics under alkaline conditions is not well-understood. Herein, we report a Ni-Pt(SAs) (SAs = single atoms) catalyst with Pt atomically dispersed in a Ni matrix, and it possesses an impressive HER performance with an overpotential as low as 210 mV at 500 mA cm-2 in strong alkaline electrolyte (7 M KOH), which is much higher than Pt nanoparticle-modified Ni catalyst (Ni-Pt(NPs)). Kinetics analysis reveals that Pt doping in the Ni matrix can accelerate the Volmer step on the Ni-Pt surface. Moreover, Ni-Pt(SAs) displays a more favorable kinetics for H2 formation reaction at high current density than Ni-Pt(NPs). Theoretical calculations reveal that atomically dispersed Pt weakens the adsorption of both H and OH on the surface of Ni-Pt electrode and promotes H2 formation from surface H on Ni-Pt(SAs).