Highly persistent and toxic organic pollutants increasingly accumulate in freshwater resources, exacerbating the human water scarcity crisis. Developing novel microrobots with high catalytic performance, high mobility, and recycling capability integrated to harness energy from the surrounding environment to degrade pollutants effectively remains a challenge. Here, we report a kind of Spirulina (SP)-based magnetic photocatalytic microrobots with a substantially decreased band gap than that of pure photocatalysts, facilitating the generation of stable holes and electrons. Under sunlight irradiation, the degradation rate of rhodamine B (RhB) by the microrobots could be increased by 7.85 times compared with that of pure BiOCl, indicating its excellent photocatalytic performance. In addition, the microrobots can swarm in a highly controllable manner to the targeted regions and perform selective catalytic degradation of organic pollutants in specific areas by coupling effect of light and magnetic field. Importantly, the catalytic capability of the swarming microrobots can be activated by light stimulus whereas inhibited by magneto-optical stimuli, with a rate constant 2.15 times lower than that of pure light stimulation. The biohybrid and magneto-optical responsive microrobots offer a potential platform for selective pollutants catalysis at assigned regions in wastewater treatment plants.
Keywords: Magnetic actuation; Microrobots; Photocatalysis; Swarm; Wastewater treatment.
Copyright © 2023 Elsevier Inc. All rights reserved.