Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP. In this study, we explored the function of MSP activated-γδT cells in HCC. Results demonstrated that the proportions of γδT cells in the peripheral blood of HCC patients and the level of IFN-γ in the serum were higher than in healthy controls. We also determined that γδT cells can bind MSP protein. MSP-activated γδT cells were shown to contain a specific CDR3δ2 sequence that supports the recognition of MSP by γδT cells. We determined that MSP is highly expressed in HCC, MSP-activated γδT cells in the peripheral blood of HCC patients express co-stimulatory molecules, and MSP-activated γδT cells directly killed HCC cells. In conclusion, we demonstrated that the novel protein ligand MSP activated γδT cells, leading to the killing of HCC cells through direct and indirect mechanisms. These findings could provide a potential new target for the clinical diagnosis and treatment of HCC and a foundation for clinical treatment strategies in HCC.
Keywords: Costimulatory molecules; Hepatocellular carcinoma; MSP; γδT cells.
Copyright © 2023 Elsevier B.V. All rights reserved.