Pulsed thermoreflectance imaging for thermophysical properties measurement of GaN epitaxial heterostructures

Rev Sci Instrum. 2023 Sep 1;94(9):094902. doi: 10.1063/5.0155795.

Abstract

Multilayer heterostructures composed of a substrate and an epitaxial film are widely utilized in advanced electronic devices. However, thermal bottlenecks constrain their performance and reliability, and efficient approaches to comprehensively measure the thermophysical properties of heterostructures are urgently needed. In this work, a pulsed thermoreflectance imaging (PTI) method is proposed, which combines the transient temperature mapping of thermoreflectance thermal imaging with transient pulsed excitation. By executing merely three transient tests, six thermophysical properties, including the film thermal conductivity and specific heat capacity, the substrate thermal conductivity and specific heat capacity, the film-substrate thermal boundary resistance, and the equivalent thermal conductivity of the insulating layer, can be simultaneously measured in a heterostructure sample. The proposed method applies a pulsed current excitation to a metal heater line on the sample surface and utilizes the thermoreflectance thermal imaging system to measure the temperature of different spatial regions on the sample surface at different time windows. The temporal and spatial variation information of the temperature field is then extracted and combined with finite element method inversion calculation to obtain the thermophysical properties of heterostructures. To validate the accuracy and reliability of this method, we conducted measurements on a GaN-on-SiC heterostructure sample and obtained thermophysical properties consistent with the representative literature data that have previously been reported. The proposed PTI method, characterized by its high sensitivity, demonstrates good efficiency and reliability in conducting comprehensive thermophysical property characterization of GaN epitaxial heterostructures.