Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors

J Nanobiotechnology. 2023 Sep 7;21(1):320. doi: 10.1186/s12951-023-02088-7.

Abstract

The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.

Keywords: Carbon nanotubes; Electrochemical sensors; Flexible application; Glucose sensors; Synergistic effect.

Publication types

  • Review

MeSH terms

  • Blood Glucose
  • Blood Glucose Self-Monitoring
  • Electric Conductivity
  • Nanostructures*
  • Nanotubes, Carbon*

Substances

  • Nanotubes, Carbon
  • Blood Glucose