The contamination and risk assessment of heavy metals (HMs) in highly priced tiger shrimp and its associated ecosystems and farming conditions (hatcheries and commercial grow-out ponds) were scarcely investigated in South Asian countries. In this study, we determined the five HMs (Cu, Zn, Pb, Cd, and Cr) concentrations in PL14 (fourteen days of Post-Larva) of Penaeus monodon, commercial diets, surface water, and sediments from hatcheries, farms, rivers using ICP-MS for two years. The results revealed that surface sediments of rivers and hatcheries had the highest amounts of Cr (65.85 ± 0.82 and 72.50 ± 0.42 mg/kg), Cu (18.82 ± 3.96 and 19.26 ± 4.61 mg/kg), and Zn (63.74 ± 11.14 and 87.42 ± 17.96 mg/kg), whereas commercial farms had the greatest levels of Cd (0.09 ± 0.05 mg/kg). Pb was significantly higher in sediment of hatcheries and farms than in other sites. Except for Zn in surface waters, all metals were found above the recommended limit. In case of supplied feed, all values were in the safe limit excepting Cr (3.39 ± 1.45 to 108.92 ± 3.49 mg/kg). On the other hand, among the metals, only Cr (VI) ranging from 1.75 ± 1.39 mg/kg in P. monodon samples exceeded the suggested international guidelines. The Igeo values of all the metals were Igeo <0, indicating that the study areas were practically unpolluted. PLI values in every station were found to be below 1 which indicates the perfection of the sediment. The Potential Risk Index (PERI) values were less than 150 suggesting low risk of metals in sediments. The public health risk assessment estimated through the calculated daily intake (EDI), target hazard quotient (THQ) and hazard index (HI) has shown that the shrimp was safe for consumers except for Cd and Cr. The THQ for Cd and Cr were higher than the threshold (>1) indicating potential health hazards. The low CR values for Cd, Cr Pb were 3.1 × 10-4, 3.7 × 10-4 and 1.6 × 10-4, respectively indicates no cancer risks upon consuming P. monodon.
Keywords: Cox's bazar; Heavy metals; Pollution index; Public health risks; Shrimp diets; Surface sediments; Tiger shrimp.
© 2023 The Authors.