Background Low physical activity (PA) is associated with poor health outcomes after stroke. Step counts are a common metric of PA; however, other physiologic signals (eg, heart rate) may help to identify subgroups of individuals poststroke at varying levels of risk of poor health outcomes. Here, we aimed to identify clinically relevant subgroups of individuals poststroke based on PA profiles that leverage multiple data sources, including step count and heart rate data, from wearable devices. Methods and Results Seventy individuals poststroke participated. Participants wore a Fitbit Inspire 2 for 1 year and completed clinical assessments. We defined a group-based steps-per-minute threshold and an individual heart rate threshold to categorize each minute of PA into 1 of 4 states: high steps/high heart rate, low steps/low heart rate, high steps/low heart rate, and low steps/high heart rate. We used the proportion of time spent in each state along with steps per day, sedentary time, mean steps among minutes with high steps and high heart rate, and resting heart rate in a k-means clustering algorithm to identify subgroups and compared Activity Measure for Post-Acute Care Mobility T Score, Stroke Impact Scale, and gait speed among subgroups. We identified 3 subgroups, Active (n=8), Sedentary (n=29), and Deconditioned (n=33), which differed significantly on all clustering variables except resting heart rate. We observed significant differences in Activity Measure for Post-Acute Care Mobility T scores between subgroups, with the Deconditioned subgroup exhibiting the lowest score. Conclusions Quantifying PA with heart rate and step count using readily available wearable devices can identify clinically meaningful subgroups of individuals poststroke.
Keywords: clustering; mobility; physical activity; remote monitoring; stroke rehabilitation; wearable devices.